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Abstract-Mixing in a conventional solids mixer is governed mainly by two basic mechanisms, diffusion and 
convection. The characteristics of these processes have been investigated separately. Model mixers were con- 
structed using these processes, and a new mixing system was synthesized by a proper combination of the two. 
Performances of the elementary model mixers, as well as the synthesized mixing system, were simulated on the 
computer, and the results of simulation were experimentally verified. The method of synthesis, which appears to be 
effective, can be extended to the design of other practical. mixing systems. 

Scope-Mixing is an operation of mingling diierent particle groups by imparting to them complicated motions by 
mechanical means. This simultaneously produces a fairly regular deterministic bulk flow of particles and very 
irregular stochastic movement of the individual particks. It is extremely ditIkult, if not impossibk, to describe such 
a phenomenon by means of the classical deterministic mechanics. The use of probabilistic approaches in this field 
is still in its infancy. Furthermore, empiricism has played a dominant role. Significant advances may never be 
attained if we continue to employ purely empirical and classical approaches. 

Conventionally, blending or mixing of solid particles has been carried out by moving, rotating, and/or vibrating 
containers, by rotating blending blades, and by passing the particles through specially designed containers. 
Lacey[l] indicated that the mechanical mixing processes induced by such complicated motions can be classified 
into three elementary mechanisms: dilfusive mixing, convective mixing and shear mixing. The thud mechanism, 
however, can be considered as a combination of the tirst two mechanisms occurring similtaneously[2]. 

The objective of this paper is to develop a new and fundamental approach to the analysis of a mixing operation 
and to the synthesis of a system for mixing two different types of particulate solids. 

Conclaaiens and SigniUcance-Conventionally, solids mixing has been regarded as a siiultaneous process involving 
both convective and diffusive mixing. The need and possibility of investigating these two elementary mechanisms 
separately for the purpose of attaining a deeper insight into the process are emphasized. 

The branching model is shown to be representative of the diffusive mechanism. Each particle falling through the 
inclined board of the mixer with rows of hexagonal blocks has a prior probability of l/2. The stratitied feeding 
model is shown to be representative of the convective mechanism. 

It is shown that the new mixing system can be synthesized by a combination of the two elementary mixing 
processes. Performances of the elementary model mixer as well as the synthesized new mixing system were 
simulated on a computer and the results of simulations were experimentally verified. The synthesized mixii 
system appears to be effective. The proposed method of synthesis can be extended to the design of other practical 
mixing systems. 

1. INTRODUCTION 

The design of mixers for particulate solids has been 
based mainly on experience. The fundamental theories 
underlying mixing operations have not been firmly 
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established. Mixing applications are becoming more 
numerous in today’s industries. Very often each industry 
has developed mixers for its own use, which has led to a 
wide diversification of the design of mixers and blenders. 
Notwithstanding the contributions by several 
pioneers[l, 3-61, progress in the field of solids mixing has 
been slow. This may be due to the inherently complex 
nature of mixing processes and the many uncertainties 
involved in practical mixii operations. 
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Mixing is an operation of mingling different particle 
groups by imparting to them complicated motions by 
mechanical means. This simultaneously produces fairly 
regular deterministic bulk flow of particles and very 
irregular stochastic movement of individual particles. It 
is extremely difficult, if not impossible, to describe such 
a phenomenon by means of Newtonian mechanics. The 
use of probabilistic approaches in this field is still in its 
infancy. Furthermore, empiricism has played a dominant 
role. Significant advances may never be attained if we 
continue to employ purely empirical and conventional 
non-unified approaches. 

The objective of this work is to develop a new and 
fundamental approach to the analysis of a mixing opera- 
tion and to the synthesis of a mixing system. Mixing in a 
conventional mixer is governed mainly by two basic 
mechanisms, diffusion and convection. A mixing process 
depending solely on one mechanism will be called an 
elementary mixing process. Two elementary mixing 
processes, one depending on diffusion only and the other 
on convection only, will be investigated separately. The 
basic characteristics of these processes will be discussed, 
with an attempt to show how a new mixing system can 
be synthesized through their proper combination. 
Finally, the new system is experimentally verified and 
numerically simulated. 

2. ELEMENTARYMIXlNGPROCESSES 

One of the best understood mixing phenomena is the 
purely diffusional mixing of gas molecules[7]. However, 
the mixing behavior of solid particles is generally far 
more complicated than that of gas molecules. The size of 
solid particles is usually too large for the theories and 
methodologies of statistical mechanics to be applicable 
to them, and the number of solid particles involved in a 
solids mixing and demixing operation is so large that 
deterministic approaches of particle dynamics are use- 
less. Moreover, since particles involved in solids mixing 
processes are always completely disjoint, the law of 
continuum mechanics is not valid for such processes 
except for idealized situations. It is therefore desirable to 
establish mechanistic models which are fundamentally 
different from those of a gas molecule mixing. 

A simple mixer with a poor mixing effect can be 
analyzed easily, but the result of the analysis will be 
practically useless. On the other hand, it is extremely 
difficult to analyze the complex behavior of a practical 
and efficient mixer by conventional means. Therefore, 
we need a new approach which, unlike the conventional 
approaches, is not tied to the analysis and design of a 
specific class of mixers or blenders. Before initiating our 
efforts to study mixing processes that involve two or 
more mechanisms simultaneously, we shall consider each 
elementary mechanism. 

(a) Diffusive mixing process 
Horizontal rotating drum mixers are probably one of 

the simplest classes of conventional solid mixers. The 
mixing mechanism in the axial direction of rotation is 
known to be diffusive[4]. However, the mixing zone is in 
the top layer, and the transporting zone beneath it does 
not directly contribute to the mixing action. The same 
mixing effect as that in the mixing zone of a rotating 
drum mixer can be obtained by letting particles pass by 
gravity over an inclined flat plate. In this paper, we shall 
consider such an idealized mixer. The mixing mechanism 

in this idealized mixer can be understood through evalu- 
ation of prior probabilistic motion of particles. 

The idealized mixer to be considered in this study is the 
probabilistic branching model as shown in Fig. 1. It is an 
inclined board with rows of hexagonal blocks 12mm 
apart; each row is offset from the one above. Glass balls 
with a diameter of slightly less than 12mm (about 10% 
11.2mm) are dropped upon the board, one at a time, 
from each position above the top row of hexagonal 
blocks. The balls are allowed to run down between the 
hexagonal blocks and are collected in the storage column 
at the bottom of the board. The distribution of balls in 
the storage column can be calculated, and a probabilistic 
model can be derived from the distribution. This ideal- 
ized mixer will give insight into diffusional processes. 

If we let particles fall continuously from the same 
position at the top of the board, the distribution of 
particles accumulated at the bottom will be ap- 
proximately normal. This results because, after N times 
of branchings, the quantitative relationship in the storage 
columns will be that of the well-known Pascal triangle. 
Two different colored particles, which originally oc- 
cupied left- and right-hand sides of the inclined board, 
were allowed to fall without interference. This prob- 
abilistic branching model is similar to the complete mix- 
ing tank model in a fluid flow network. The model for the 
fluid mixing action in recently developed motionless 
mixers is also similar to the probabilistic branching 
model[& 91. 

(b) Convective mixing processes and stratified feeding 
The formulation of a striated mixture of highly viscous 

material can be obtained by repetitive convective 
mixing[lO]. Its mechanism has been elucidated by 
Spencer and Wiley [lo], and is depicted in Fig. 2. Mohr 
et al. [ 11, 121 and Mohr [ 131 discussed the striated mixture 
in their studies on mixing in laminar flow systems. 
However, none of them dealt with the effect of the 
number of striae on the mixing processes. Two groups of 
particles with the same quantities and dimensions, one 
on top of the other, are elongated horizontally until their 
length becomes twice the original length. The mixture is 
then vertically cut and one half is placed on top of the 
other. This creates four striae. By repeating this operation, 

N=O -0 0 0 0 0 () (-)- 

.. . 0 0 0,f.O 0 0 . . . 
N=l . . 0 () () ‘-0 0 0 0. . . 

.‘. 0 0 0 0 0 0 ... 
N=2 -0 0 0 0 () () 0.. 

‘.. 0 0 0 0 0 0 ... 
. . . . . . . . . . 

-0 0 0 0 0 ‘0 0:. 

Fig. 1. Probabilistic branching model mixer. 
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Fig. 2. Formation of a striated mixture. 

multi-layer striated mixtures with 8, 16,32,. . . striae are 
obtained. This is essentially convective mixing and is 
completely different from diffusive mixing. This con- 
vective mechanism predominates in pie-kneading 
operations [ 141, finger-prone type mixing [ IS], and 
recently developed motionless mixers. 

The convective mixing mechanism, giving rise to a 
striated mixture, can be obtained by a proper feeding 
mode. Such a feeding mode, termed stratied feeding, 
can be considered a mechanical analog of convective 
mixing[l6]. An increase in the number of separating 
surfaces of the components increases the total rate of 
mixing. 

Mixing of free falling solid particles in a motionless 
mixer is mainly affected by two mechanisms: (1) multiple 
divisions and recombinations of the flow of particles by 
the helices, i.e. static mixing elements; (2) random inter- 
action of the particles with each other, with the helices, 
and with the wall of the mixer. By contrast, in the 
stratified feeding mode, each particle group is subdivided 
separately, transported and fed stratiliedly. The sub- 
division and combination of the mixture is mainly done 
at this stage of the feeding. The subdivision of the 
particle group occurs only once while the subdivision in 
motionless mixers occurs repeatedly. 

3. DIFRJSMl MIxlNG PROC= AND NUMERICAL SIMULATION 

OF A PROBABMSW BRANCEING MODEL MIXER 

Diffusive mixing processes have been treated most 
frequently by deterministic diffusional models[2,4]. On 
the other hand, Inoue and Yamaguchi[U] have proposed 
using Markov processes to describe solids mixing in 
two-dimensional V-type mixers and pan mixers. 
We shall investigate the diRusive mixing pro- 
cesses with theories of probabilities, Markov processes 
and diffusion. Specifically, the idealized mixer (Fig. 1) is 
studied with three different approaches; the coefficients of 
the binomial series, Markov processes and diffusion 
theories. By applying these three approaches to the 
model mixer, we may eventually gain insight into the 
mechanisms of solids mixing. 

(a) CoeJicients of binomial series 
Indices are assigned to the particles to be fed into the 

probabilistic branching model mixer as shown in Fig. 1. 
These indices may be called the feeding addresses. 
Particles of component A, are placed at addresses k’s 1 
0, and particles of component A0 are placed at addresses 
k’s CO. The concentration distribution of particles of 
component At among all addresses can be theoretically 
predicted if each particle is allowed to fall independently 
from the feeder to stage N. Note that two succeeding 

*This asstimption is equivalent to the. assumption of the 
Markov process in that other states are eliminated. 

rows are counted as one stage, as indicated in Fig. 1. A 
particle of component A1 falling from address k = 0 at 
stage N = 0 can only go to addresses k = -1, 0,l at stage 
N = l.* The proportion of the number of particles in 
these addresses is 2Co:2CI :X2, where ,,,G is the 
binomial coefficient representing the number of 
combinations of m objects taken n at a time if the order 
of object is unimportant. Each particle of component A, 
falling from any address, k = 1,2,. . ., will have a similar 
result. The details of each transition stage are given in 
Table 1. The number of particles of component A1 at 
each address at stage N = 1 is: 

and the total number of particles in each address is: 

Hence, the concentration distribution at stage N = 1 is: 

k+I 

Xk =~~$/22,_ -1lkSl 

= 0 k<-1 

= 1 k> 1. 

Similarly, at stage N = 2, we have: 

k+2 

xk=mzo@$ -2sks2 

=o kc-2 

=l k > 2. 

In general, at stage N, we have: 

k+N 

xk=z+ -NsklN 
m-cl 

= 0 k<-N (1) 
= 1 k > N. 

Let us de&e the total number of particles of component 
A, that have d8used to the left of address k = 0 at stage 
NasJuN;then: 

M,= i 2Cm at N=l 
m-0 

--I k+N 

&= kz2m&dm 
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Table 1. Transition of particles of component A, in probabilistic branching model 

Component Ao Al 
k . . . -4 -3 -2 -1 0 I 2 3 4 . . . 

ag 
2 % k=O 
.$ 7 

2co XI 2c2 

I 2” 
k=l 2co 2CI x2 

“P 
k=2 x0 ICI x2 

as k=3 x0 2Cl 2c2 . . . 

s$ 

Total 2co i 2cm $02cm io2cm $02c $02cm . . . 
n-0 

l 

xk . . . 0 0 0 0.25 0.75 I 1 1 1 . . . 

ai 
p s_ k=O 

.s 2 
k=l 

2 ge 
k=2 
k=3 

” a 
8 k=4 

i?g k=S 

Total 

4co 4G 4c2 4G 84 

4co 4CI 4c2 4c3 4c4 

4co 4CI 4c2 4c3 4c4 

4co 4CI 4c2 4c3 . . . 

4co 4CI 4C2 . . . 

4co *c, . . . 

4co li $04cm 4ctn 
Ill-0 

$04cm .io4cm go4cm $04cm ... 

xk . . . 0 0 0.0625 0.3125 0.6875 0.9374 1.0 1.0 1.0 .,. 
. . . 

In general, at stage N: 

The absolute probability, pdN) of a particle of 
component A1 in address k at stage N corresponds to a 
linear combination of probabilities of all particles at 
stage N, i.e. 

x,(N) = prs(N). 

Note that the probability of each partide being at ad- 
dress k of stage N is independently determined as a 
coefficient of the binomial series. Also, & is the mean 
concentration of component Al in address k at stage N. 
The concentration distribution at stage N is shown in 
Fig. 3, where the abscissa is address k, and the ordinate 
is the concentration of component A,, &. 

The fraction of component A,, a, which remains in 
and to the right of address k = 0 can be expressed by the 
following equation. 

,,_2MN 
TN 

where MN = the number of particles of component A, 
after N stages of transfer to the left of address k = 0, 
which is given by JZq. (2); M, = lim ‘MN and 

TN = total amount of particles, 2L A p&&r o vs N in 
Fig. 4 gives a linear relationship which has been predicted 
by a deterministic difIusional modelI2, also see Sec. 
III(C)]. From this simple demonstration, we can see that 
the probabilistic branching model can describe the 
diffusive mixing mechanism of particles whose prior 

-3 4 -3 -2 -I 0 I 234 

Addnss, k 
Fig. 3. Concentration profiles as a function of position based on 

the coefficient of binomial series approach. 

probabilities are known as the coefficients of the binomial 
series. 

(b) Maho process 

In the probabilistic branching model, each particle is 
branched to the left or the right with probability of l/2 at 
each row. Let Yi (i= . . ., -2, -1, 0, 1, 2, . . .) be the 
random variables which are the new addresses that 
particles will occupy at each stage. Assume that there is 
a total of IV addresses in the probabihistic branching 
model. The event that a particle of component A, oc- 
cupies an address k at stage N is denoted by YH = k, 

and the probability that the same particle occupies ad- 
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Fig. 4. Variation of remaining fraction vs number of mixing stages. 

dress k is represented by pk(N), i.e. 

pr(N) = Prob (YN = k). (4) 

This expresses the absolute probability distribution at 
stage N 

Let pj,JN) be a transition probability for the moving of 
a particle from address j to address k with one transition 
from stage (N - 1) to stage N. From the nature of the 
model, the transition probability is decided by the two 
events YN = k and Y N-, = j only: 

~,~(N)=Prob(y~ = kJYN-, = j). (5) 

Therefore, the mixing process can be regarded as a 
homogeneous Markov chain. If pk,(N) is considered to 
be constant at any stage N, i.e. 

pki(N) = pkj = constant, N = 0, 1,2, . . . (6) 

the process is a steady state Markov chain[l8]. Since 
pb’s are transition probabilities, they must fulfill the 
following two constraints: 

o~pkj~l (7) 

and 

$, Pki = 1. 

For the branching process with equal probability of l/2 
as depicted in Fig. 1, transition probabilities are given 
‘and are independent of the position j(j = 1,2,. . ., w). 

pjj = l/2 

pi_cj=1/4 j=2,3,...,w-1 (9) 

pj+l.j= 114. 

If the walls of the mixer are the retIecting type for j = 1 
andj=w: 

P,l=Pwv=3/4 

p12=pww-I = l/4 

and 

pij = 0 otherwise. 

Thus the transition matrix of the process becomes: 

0.15 0.25 0 

p=;:: I 0.25 0.50 . 0.25 

. . . 0 

. . . . ,;: (10) 

0 0 . . . 

0 0 1 

0.25 0.75 

From the theories of stochastic processes, absolute 
probability p,(N) of a particle in address j at stage N is 
obtained from the equation [ 181 

p(N) = ~~~(01 (11) 

where: 

rida 

Note that p(O) is the initial distribution of particles. It will 
be called the “feeding vector’:. From Eq. (11) and the 
transition matrix, we can evaluate the probability p(N) at 
each address of stage N, and the concentration’ dis- 
tribution among all addresses (Fig. 5). Comparison of the 
calculated concentration distribution (Fig. 5) with that 
given in Fig. 3, which is based on the calculation of 
the coefficients of the bionomial series, indicates that the 
agreement between them is fairly close, since these two 
approaches are essentially based on the same 
principlesIl91. We can conclude that the degree of 
mixedness in the horizontal direction at stage N in the 
branching model mixer, with equal prior transition prob- 
abilities, can be predicted from the theories of stochastic 
processes without experimental measurements of the 
transition probabilities, as required by other mixers. 

(c) Difursion theory 
As mentioned in Sec. III(A), particle motions in.the 

probabilistic branching model mixer (Fig. 1) show 
diffusive mixing in the horizontal direction. The 
diffusional process can be described by a simple deter- 
ministic diffusion equation. Hence, the concentration 
distribution can be regarded as a function of the 
continuous variable I which is the horizontal distance 
from the center line of the mixer. The governing equa- 
tion for the diffusional process in terms of I and time t is 
then: 

ax= a2x 
at %F (12) 

where X is the concentration of the particles of 
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Fig. 5. Concentration profile as a function of position based on the theory of stochastic process. 

component Al and D is a proportional coefficient term When n or D is large, the second and higher order terms 
generally called the diffusivity. Since the time of passage in the series at the RHS of the above equation can be 
for the particles through each stage is approximately neglected. This leads to: 
equal, t can be replaced by the number of transition 
stages, N. From the nature of the probabilistic branching 
model mixer, we can assume the following initial and (16) 

boundary conditions: 
where: 

initial conditions: 
L 

X=0 --1110 
2 

X=1 O<lc+$ 

a = 1 - x I-w/2),01 

A=ln-$ 

B = &r/L* 

boundary conditions: 7=1 
8X 

IO - 
N’ 

7 = 

8X - I al l=(u2) 

=o. (13) 

The above boundary conditions state that there shall be 
no net flow of material in the axial direction. The solu- 
tion to Eq. (12) subject to the above initial and boundary 
conditions is [20]: 

A plot of concentration X, as a function of distance l/L 
with (m/L*) as a parameter, is shown in Fig. 6. The 
average concentration of component A, at the left hand 
side of the center line of the mixer, -(L/2) 5 IS 0, is 

X dl 

Equation (16) explains the linearity of the plot of In o 
against N shown in Fig. 4. 

5. SYNTHBIS OF A FtUXINC SYSTEM 

With an understanding of the two elementary mixing 
mechanisms, diffusion and convection, a mixer can be 
synthesized by some combination of the convective 
model mixer (stratified feeding mixer) and the diffusive 
model mixer (probabilistic branching model mixer). 

Let us now specifically consider a series combination 
of the two mixers in which the convective model mixer is 
followed by the diffusive model mixer. In this 
synthesized mixer, the convective mixing and diffusive 
mixing occur separately. Let each stria of the stratified 
feeding mixer contain two columns of identical particles 
as shown in Fig. 7. The corresponding feeding vector can 
be expressed as follows: 

p(0)=[11001100...1100]7 (17) 

If we further assume that the particles fall down in- 
dependently from the top of the diffusive model mixer 
(probabilistic branching model mixer) without interaction 
with other particles, the transition matrix given by Eq. 
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Fig. 6. Distribution of concentration d(t, I) vs I/i with Ot/L* as a parameter in a two stria feeding vector to the 
probabilistic branching model mixer. 

Fig. 7. A. striated feeding mixer and a probabilistic branching model mixer. 
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(10) is applicable. For this new mixing system, the feed- tration is very close to the equilibrium concentration, i.e. 
ing vector represents the total extent of the mixing due x, = 0.5, k = . , ., -2, -1, 0, 1, 2,. . . . 
to the convective mechanism, and the transition matrix Performance of the new mixing system can also be 
represents the total extent of the mixing due to the simulated numerically on a computer. Each particle that 
diffusive mechanism. The resulting concentration dis- falls from the top of the system can go either left or right, 
tribution is shown in Fig. 8. After N = 5, the concen- and random numbers can be generated by simply 
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Fig. 8. Concentration distribution in the synthesized mixer with an eight stria feeding vector. 

assigning the even numbers to the particles which go to 
the right and the odd numbers to the left. In other words, a 
random number is generated to make a decision for a 
particle encountering a hexagonal block. The result of this 
simulation is also shown in Ft. 8. 

The theory of this approach can be extended to the 
design and synthesis of other types of mixers. It is not 
necessary to restrict efforts in synthesis to only the two 
elementary model mixers; any suitable mixer can be 
synthesized to form an effective new mixing system. For 
the case where interactions among particles exist, the 
above approach still can be applied; however, the tran- 

(a) 

,000 
30 I?. 

boo 
(b) 

sition matrix may become more complex and ditlicult to 
obtain. The methods of this study have not actually been 
applied to the design of industrial solids blending 
equipment. However, the recent development of a 
multiport type mixer[21], indicates a possibility of using 
the methods in practice. 

5. -AL VEBlFlCATlON 

Results of simulation presented in the previous section 
were experimentally verified with the equipment shown 
in Fig. 9. The hexagonal blocks were fixed on a board 
made of vinyl chloride plate 3 mm thick. The cells for 

Fii. 9. Experimental set-up. 
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feeding, which are located at the upper side, and the system has 16 cells and five stages, i.e. N = 5. Spherical 
cells for receiving, which are located at the lower side, glass particles with a mean diameter of 10.98mm were 
are also made of vinyl chloride. The board, initially used. 
maintained in a horizontal position, was rotated until the First, four particles were allowed to fall from each 
angle of inclination became 12”. The stratified feeding address at (1, 5, 9, 13). This arrangement was to insure 
mixer and the probabilistic branching model mixer non-interference among the particles. After the first set 
shown in Fig. 7 are rested on top of the board. This of four particles at addresses (1,5,9, 13) had reached the 
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Fig. IOa. Experimental results and theoretical predictions of a two stria feeding vector, N = I. 
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Fig. lob. Experimental results and theoretical predictions of a two stria feeding vector, N = 2. 
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Fig. IOc. Experimental results and theoretical predictions of a two strip feeding vector, N = 3. 
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Fig. 1Od. Experimental results and theoretical predictions of a two stria feeding vector, N = 4. 
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Fig. We. Experimental results and theoretical predictions of a two stria feeding vector, N = 5. 
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Fig. lla. Experimental results and theoretical predictions of a four stria feedii vector, N = 1. 
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Fig. 1 lb. Experimental results and theoretical predictions of a four stria feeding vector, N = 2. 
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Fig. llc. Experimental results and theoretical predictions of a four stria feeding vector, N = 3. 
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Fig. 1 le. Experimental results and theoretical predictions of a four stria feeding vector, N = 5. 
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particles at addresses (3, 7, 11, 15) was allowed to fall 
after the set of particles at addresses (2, 6, 10, 14) had 
reached the second stage, and so forth. This process of 
feeding was continued for fifty repetitions. The behavior 
of the particles was recorded continuously by an Ashahi 
Pentax motor drive camera. In analyzing the photo- 
graphs, particles that had collided with each other or 
wedged in the system were eliminated, although there 
were few such particles. The result at each state N was 
obtained by counting the number of particles at each 
address in the receiving columns. 
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